Automated three-dimensional choroidal vessel segmentation of 3D 1060 nm OCT retinal data

نویسندگان

  • Vedran Kajić
  • Marieh Esmaeelpour
  • Carl Glittenberg
  • Martin F. Kraus
  • Joachim Honegger
  • Richu Othara
  • Susanne Binder
  • James G. Fujimoto
  • Wolfgang Drexler
چکیده

A fully automated, robust vessel segmentation algorithm has been developed for choroidal OCT, employing multiscale 3D edge filtering and projection of "probability cones" to determine the vessel "core", even in the tomograms with low signal-to-noise ratio (SNR). Based on the ideal vessel response after registration and multiscale filtering, with computed depth related SNR, the vessel core estimate is dilated to quantify the full vessel diameter. As a consequence, various statistics can be computed using the 3D choroidal vessel information, such as ratios of inner (smaller) to outer (larger) choroidal vessels or the absolute/relative volume of choroid vessels. Choroidal vessel quantification can be displayed in various forms, focused and averaged within a special region of interest, or analyzed as the function of image depth. In this way, the proposed algorithm enables unique visualization of choroidal watershed zones, as well as the vessel size reduction when investigating the choroid from the sclera towards the retinal pigment epithelium (RPE). To the best of our knowledge, this is the first time that an automatic choroidal vessel segmentation algorithm is successfully applied to 1060 nm 3D OCT of healthy and diseased eyes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients.

PURPOSE To evaluate the performance and potential clinical role of three-dimensional (3D) 1060-nm OCT by generating choroidal thickness (ChT) maps in patients of different ages with different degrees of ametropia and axial lengths and to investigate the effect of cataract grade on OCT retinal imaging quality. METHODS Axial lengths (ALs) and 45° fundus photographs were acquired from 64 eyes (3...

متن کامل

Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model

A two stage statistical model based on texture and shape for fully automatic choroidal segmentation of normal and pathologic eyes obtained by a 1060 nm optical coherence tomography (OCT) system is developed. A novel dynamic programming approach is implemented to determine location of the retinal pigment epithelium/ Bruch's membrane /choriocapillaris (RBC) boundary. The choroid-sclera interface ...

متن کامل

In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm.

PURPOSE To investigate the retinal and choroidal vascular pattern, structure, and thickness using high-speed, high axial resolution, swept-source optical coherence tomography (SS-OCT) at 1060 nm, demonstrating enhanced penetration through all choroidal layers. METHODS An ophthalmic SS-OCT system was developed operating at 57,000 A-lines/s with 5.9 μm axial resolution and was used to collect 3...

متن کامل

Mapping Retinal and Choroidal Thickness in Unilateral Nongranulomatous Acute Anterior Uveitis Using Three-Dimensional 1060-nm Optical Coherence Tomography.

Purpose To analyze retinal thickness (RT) and choroidal thickness (ChT) changes in patients with unilateral nongranulomatous acute anterior uveitis (AAU) using three-dimensional (3D) 1060-nm optical coherence tomography (OCT). Methods Retinal and choroidal thickness maps were statistically analyzed for 24 patients with newly diagnosed unilateral AAU before therapy. A total of 17 patients were...

متن کامل

Automated segmentation and characterization of choroidal vessels in high-penetration optical coherence tomography.

An automated choroidal vessel segmentation and quantification method for high-penetration optical coherence tomography (OCT) was developed for advanced visualization and evaluation of the choroidal vasculature. This method uses scattering OCT volumes for the segmentation of choroidal vessels by using a multi-scale adaptive threshold. The segmented choroidal vessels are then processed by multi-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013